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(1 + 2)-Dimensional Model of the Early Universe 
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An anisotropic cosmological model is obtained by solving (1 + 3)-dimensional 
field equations. The topology of the model is R I @ M 2 | S I, where R I is the 
real line (time axis), M ' i s  2-dimensional space, and S i is the circle. Employing 
the method of Kaluza-Klein type compactification on S J and one-loop quantum 
correction to scalar fields, an effective (1 + 2)-dimensional gravity is obtained. 
The resulting (1 + 2)-dimensional cosmological model of the early universe 
is derived. 

1. INTRODUCTION 

Recently there has been much interest in (1 + 2)-dimensional gravity, 
as it is supposed to be a useful toy model for a (1 + 3)-dimensional theory 
of gravitation. Until recently the existence of gravity in (1 + l)-dimensional 
space-time and (1 + 2)-dimensional space-time was supposed to be a theory 
without any intrinsic dynamics. Fujiwara et  al. (1991) have discussed nucle- 
ation of the universe in (1 + 2)-dimensional gravity and topological changes 
in the realm of quantum gravity. Souradeep and Sahani (1992) have discussed 
quantum effects near a point in 3-dimensional gravity. 

Here, using the method of spontaneous compactification in Kaluza- 
Klein-type theories (McGuigan, 1991; Srivastava, 1992a, b, 1993) a (1 + 2)- 
dimensional cosmological model is obtained. This approach is new in the 
sense that the (1 + 2)-dimensional cosmological model is obtained from the 
(1 + 3)-dimensional anisotropic model of the early universe without a "crack 
of doom" singularity. Earlier, this method was employed (McGuigan, 1991; 
Srivastava, 1993) to get (1 + l)-dimensional gravity. In the present paper, 
an anisotropic singularity-free (1 + 3)-dimensional cosmological model is 
obtained by solving the Einstein field equations. The topology of this model 
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is given as R l @ M 2 | S t (R l is the real line, which is the time axis, M 2 is 
2-dimensional space, and S ~ is the circle, which is compact). The isometry 
group U(1) acts transitively on the compact manifold S ~. Kaluza-Klein-type 
compactification is done on S ~. As a result, a (1 + 2)-dimensional cosmologi- 
cal model is obtained. 

The focus of  this paper is first getting a (1 + 3)-dimensional cosmological 
model by solving Einstein's field equations exactly. Then it is discussed 
that a physically meaningful model will be spatially flat. Second, using 
Kaluza-Klein compactification, (1 + 2)-dimensional gravity is obtained. The 
paper is organized as follows. Section 2 contains the exact solution of  Ein- 
stein's field equations. In Section 3, dimensional reduction of  scalar as well 
as gravitational fields is discussed. Section 4 contains the one-loop correction 
to dimensionally reduced scalar fields. In Section 5, an effective action for 
(1 + 2)-dimensional gravity is obtained. Section 6 is a concluding section 
which discusses some cosmological implications of  the (1 + 2)-dimensional 
model. Natural units (h = c = I) are used throughout the paper. 

2. (1 + 3 ) -DIMENSIONAL A N I S O T R O P I C  C O S M O L O G I C A L  
M O D E L  

The cosmological model having topology R I ~ M 2 ~ S I has the line 
element 

( dr2 + r2 dO2) - b2(t)p2 d02 (2.1) ds2 = dt2 - aE(t) l - k--2r 2 

where t is the cosmic time, a(t) and b(t) are scale factors, p is the radius of  
S l (circle), k2 is the spatial curvature with possible values + 1, O, - 1  for 
closed, flat, and open spatial submanifold M 2, respectively, and 0 --< OE --< 2"ft. 

The energy-momentum tensor for the anisotropic fluid can be written as 

To.,, = (e + p)uo.u~, - (Sp + 8if)go.,, (2.2) 

where Ix, v = 0, 1, 2, 3; r is the energy density, p is the pressure on M 2,/~ 
is the pressure on the compact manifold SI, and ~ = 1 - ~ with 

{~ for tt, v = 0 , 1 , 2  
= for Ix, v =  3 

Thus, 

T O = ~, T] = T 2 = - p ,  T 3 = -/~ (2.3) 

In the background geometry with the line element given by equation 
(2.1), Einstein's field equations are 
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-~  + + 2  a b - 4~rGt2~ (2.4a) 

a 2 + -~x + - -  2 - -  + = - 4 a r G t ~ ( ~  - p )  (2.4b) a a 

- ~  + -~ 2 --a + = -47rGt~,(~ + p - 2p) (2.4c) 

where prime denotes differentiation with respect to the dimensionless parame- 
ter x = tltp (tp is the Planck time), G stands for the four-dimensional Newtonian 
gravitational constant, and G~ are components of the Einstein tensor. We 
have three constraint equations: 

G ~  = 0 (2.5a) 

T ~  = 0 (2.5b) 

G ~  = T~,~ = 0 (2.5c) 

where the semicolon stands for covariant differentiation. 
In the geometry given by equation (2.1), equation (2.5a) yields the 

constraint equation 

(GO) ' = 0 (2.6a) 

equations (2.2) and (2.5b) imply that 

~ ' + ~  2 - - + a  + 2 P - - + a  / ~ b  = 0 (2.6b) 

and equation (2.5c) yields 

G8 = T o const (2.6c) 

which reduces to equation (2.4a) on using the definitions of G o and TS. 
Solutions of equations (2.4b) and (2.4c) should satisfy the constraint equations 
(2.6a)-(2.6e) at all times. If these equations are satisfied at one particular 
time, these can be treated as satisfied at all times. So, for convenience, one 
can choose the particular epoch "r = 0 and can find conditions obeying the 
constraint equations (2.6). 

Using the conditions 

k2 (2.7a) 
p = ~ + 4arGt2a z 
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and 

p = ~ + - -  

in (2.4b) and (2.4c), one obtains 

2,trGt~a 2 

a ( a d + - -  2 - - +  = 0  
d'r a a 

+--b-- 2 - - + a  = 0  

(2.7b) 

(2.8a) 

(2.8b) 

a ' =  1 (2.13) 

a = ao + -r (2.14) 

Using equations (2.7) and (2.14) in equation (2.6b), we obtain 

= (ao + "r)-2[1 + f2(ao + "02] -2 

• A 2~Gt~, In [l + f2 (ao  + "r)2] u~ (2.15) 

Using the results given by (2.14) and (2.15) in the constraint equation (2.4a), 
we can evaluate the integration constant A as 

where ao = a('r = 0). 

which yields the solution 

Now, it is helpful to make the ansatz 

1 
b 2 = f2  + a2(a.____ ~ (2.9) 

Using the ansatz given by (2.9) in (2.8a), one obtains 

a'(1 + f2)l/2a2 = A (2.10) 

where ,4 is an integration constant. Connecting equations (2.8b) and (2.9), 
one obtains 

a r 

= / ~  (2.11) (1 + f2a2)V2 

Equations (2.10) and (2.11) yield 

a '  = (,~B) la (2.12) 

Now rescaling a to a(,~/~) v2, one obtains 
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A = (4"trGt2)2-1[(k2~ + 1)(1 +f2a2)2 - 2(1 +f2a2)  

+ 2kzf 2 ln[ao/(1 + f2a2)lr2] } (2.16) 

Thus, from equations (2.15) and (2.16) 

= (47rGt2)- l (ao + ,r)-2[1 + f2(ao + ,02] -2 

• {(k2/2 + 1)(1 + f2a02)2 - 2(I + f 2a2)  

1 + f2a~  ' (2.17) 

From equation (2.17), one can derive the following conclusions: 
1. If k2 = 0, a 0 4 : 0 ,  

(1 + f 2 a 2 ) ( f 2 a ~ -  1) 
= 4~rGt2(a ~ + ,r)2[1 + f2(a  ~ + ,02] 2 (2.18) 

Since ~ is the energy density, it will be positive. So, in this case 

f 2 a 2  > 1 

2. If k2 = 0, ao = 0, e < 0 at all epochs, which is unphysical. 
3. If k2 = +-1, ao = 0, e will be divergent at all times. 
4. If k2 = +1, ao ~ 0, 

= (4,trGt2)-I(ao + ,0-211 + f2(a  o + ,02] -2 

• {(1 + f2a~)[(1 + t2p)(1 + f 2a2)  -- 2] 

1 + f2a~  (2.19) 

5. I l k  2 = - 1 ,  ao ~ 0, 

e = (4"rrGt2)-l(ao + "r)-2[1 + f 2 ( a  0 + "02] -2 

• {(1 + f2a02)[(1 - ~)(1 + f2a~) - 2] 

+ 2f  2 In 1 + f2(ao + "r)2J J (2.20) 
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Looking at the above five cases, one finds that the constraint equation 
(2.6c) is satisfied at "r = 0 if a0 :/: 0 and k2 = 0 or _ 1. The constraint 
equation (2.6a) yields the following results: 

l. f 2 a ~ =  I + ~ i f k 2  = 0. 
2. f22a~ = -1 /2  if k2 = - 1 .  
3. f2a~ = 0 i f  k2 = +I .  

Sincefis a real number, f2a~ = - 1/2 implies that a0 should be complex, 
which is unphysical. This indicates that k2 :/: - 1 .  Now, f cannot be zero, 
because the vanishing o f f  implies the existence of a "crack of doom" singular- 
ity. So, if k2 = + 1, a0 = 0. But if a0 = 0, the constraint equation (2.6c) will 
not be satisfied at any time. This indicates that the choice k2 = + 1 also is 
not possible. Ultimately, one finds that the only possibility is k2 = 0 with 

f2a~ = 1 + ,f2 (2.21) 

Thus, one finds the solution of equations (2.4) as 

a = ao + (t/tp) (2.22) 

and using equation (2.14) in equation (2.9), we have 

b 2 = f 2  + t2(aotp + /)-2 (2.23) 

According to the discussions given above, one finds that k2 -- 0 and ao 
:/: 0. In the case ao -- 0, some constraint equations are not obeyed. So, to 
get the cosmological model obeying equations (2.4) at all epochs (t ~ 0), ao 
should be nonzero and positive, which is given by equation (2.21) provided 
thatf is  evaluated. Evaluation o f f  will be discussed later. A nonzero positive 
value of ao implies a singularity-free cosmological model. 

Because of the Hawking-Penrose theorem, the big-bang singularity 
might be supposed to be inescapable in general relativity. But this supposition 
was shaken in 1990 due to the discovery of the singularity-free cosmological 
solution of general relativity by Senovilla (1990). Later, other authors also 
obtained some interesting cosmological solutions without a singularity (Ruiz 
and Senovilla, 1992; Dadhich and Patel, 1993). It is appropriate to mention 
here that the Hawking-Penrose theorem was proved for closed models or 
models with closed, trapped surfaces (Hawking and Ellis, 1973). The cosmo- 
logical models mentioned above (Senovilla, 1990; Ruiz and Senovilla, 1992; 
Dadhich and Patel, 1993) and the model derived here are neither closed nor 
contain any closed, trapped surface. So, acceptance of this theorem does not 
make these singularity-free cosmological models invalid. 

Thus, the (3 + 1)-dimensional anisotropic singularity-free cosmological 
model of the early universe is obtained as 

ds  2 = dt  e - aZ( t ) (dr  2 + r 2 d02) - b2(t)p 2 d02 (2.24) 
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with a(t) and b(t) given by equations (2.22) and (2.23), respectively. From 
here on, we work with this line element. 

Using equation (2.22) in equation (2.18), we obtain 

2(I + ,,/~)3e o 
e = [f'r + (1 + x/~-)lr212{1 + [f'r + (1 + v/2)lr212}2 (2.25a) 

with 

x/~ M4 f 2 
e~ = 4"rr(l + v/2)2x/r2 (2.25b) 

b(t), given by equation (2.23), does not have a "crack-of-doom" singularity, 

lim b(t) = f > 0 
t----),o0 

3. DIMENSIONAL REDUCTION 

3.1. Gravi ty  

The four-dimensional action for gravity is given by 

if S(g4) = 16-'trG d4x(-g4)ly2g4 (3.1) 

where G is the (1 + 3)-dimensional gravitational constant, g4 is the determi- 
nant of g~, and R4 is the Ricci scalar obtained from g~.  

For the sake of convenience, the metric tensor given by equation (2.24) 
is written as 

where g~,r = diag(1. - a  2, -a2). Now g~. is conforrnally transformed to ~ as 

where 

g~ = b2(t)gr = b2(t)(g~r - P  20 ) 

~ , ,  ---- diag(b-2, -a2b -2, -a2b -2) 

Now equation (3.1) can be rewritten as 

t ( tl] 1 f d3x dOE b2p(~3) 1~ /~3 - 18 S~4) = 16~G 
3 

(3.3) 

(3.4) 



178 Srivastava 

Ignoring terms of total divergence and integrating over 0E, one obtains 

[ q- "ind~'(3)(m) = __1 38G fj d3x b2(g3)l/2 b2R3 -- 22 (3.5) S~ 3) 

To undo the earlier cortformal transformation, another conformal 
transformation 

g~'v' = b-2g~'r (3.6) 

is employed. As a result, from equation (3.5), one obtains 

f [ S(3) q_ •(3)(m) 1 dSx a2b R3 - (3.7) 
~ i n d  = 16"rrG3 -~  \ d t ]  _~ 

where G3 = GI2"trp and 

I :r ,, S[3)a(m) = d 3 x a  [ ~  \-d~] (3.8) 

which is a contribution to the matter fields induced by the compactification 
of the circular component of space. 

3.2. Scalar Fields 

The existence of some scalar field d~ with bare mass m0 is assumed in 
the background geometry with the action given by 

,f S~  ) = ~ d3x dOE a2bp[g~VO~*O,d~ - (~R4 + m~)~b*dp] (3.9) 

where ~ is a nonminimal coupling constant and 

22 (db~ 2 
R4 = R3 - --~ k~-f ] (3.1Oa) 

with 

R 3 = 4 a  - l  d2a dt 2 (3.lOb) 

On the space-time with topology R I @ M 2 @ S 1, ~b can be decomposed as 

d~ = (2"trpb) -1/2 ~ tb,(t, r, 0) exp[i(n + a)0e] (3.11) 
n ~  - c o  

where a = 0 (1/2) for untwisted (twisted) fields. S l is a manifold which is 
not simply connected, so the possibility exists for untwisted (twisted) fields 
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on the circle. From here on, only untwisted scalar fields on S * will be 
considered (Srivastava, 1992b, 1993). 

Substituting the decomposed form of ~b given by equation (3.11) into 
equation (3.9) and integrating over 0E, one obtains 

S~)= 1 d3xa 2 ~ d~* 0 0 
- 2  n=-| -~ a2 ~t ~n 

1 0 ( Od:.~ 1 oZd:,,+ m~+.] (3.12a) 
a2r Or r Or ] a2r 2 O0 -----T 

where 

with 

n 2 

m 2 = r~ 2 + p2b-- 5 (3.12b) 

22~ (db'~ 2 1 d2b 3 (db'~ 2 
r~ = m~ + fioR 3 - --~ \at] 2b a----~ + 4-~ \ dt] (3.12c) 

4 .  ONE-LOOP QUANTUM CORRECTION TO ~bn 

Here the one-loop quantum correction to the scalar fields dpn is obtained 
by employing the operator regularization method, which is an extension of 
zeta-function regularization. 

Now, dp, is a 3-dimensional scalar field. So, on adding the significant 
contribution of the one-loop correction, the effective action is obtained up 
to adiabatic order 4 as (Mann et al., 1988189) 

r = ~ + d ((, + I,2: : 2y 
~176 . . . .  -~s \" -F-~4~--~ ~m~} 

f { (m2)3t2 (m2)1/2 ( 6 )  
• d3xa2 ( s - 3 1 2 ) ( s -  112) + ( s -  1/2) - ~ R3 

+ (m2)-I/2 [~3R3 + "~ "'3 "'3p.','a'la' 

1 , ,  1 1 _ R3 2 
180R 'R X"-g D R +  g: . ,=o 

(pL', v', a', [3' .... = O, I, 2) (4.1) 
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Now, F~ has a pole at s = 0, so one can write 

1 
F ,  = - - ~ + O(s) (4.2) 

S 

where ~ = 0.5772 is the Euler constant. Now, using equation (4.2) in (4.1), 
we obtain 

d 1 - -  + l "~ = u0~ bq(3, at. (4,rr)3/2 ,=Z-= -~s "ys sO(s) ~m~] 

• l dax a2 { m 3 + m, 
( s -  3 / 2 ) ( s -  1/2) ( s -  1/2) 

1 
+ 1 ~  R~'r162 -- ~-0 R~'V'R3~'r 

(4.3) 

Using the Riemann zeta function 

p ( r )  = n r 
n=l  

(4.4) 

one can easily obtain from equation (4.3) 

(m2) 3/2-' 
n ~ ~ o o  

+~ -~  - ~ ( , ~  E n ' + . ' .  
~ - - o o  

= 2(n~)3rZ-sp(O) + 2(3/2 - s)(r~)U2-sp-2b-2p(-2)  

+ (3/2 - s)(l/2 - s ) ( r~ ) -u2- ' p -Zb-2p( -4 )  + . . -  (4.5) 

Though p ( - 2 x )  (x is a positive integer) and p(0) are divergent, using the 
method of  analytic continuation one obtains (Bateman, 1955) 
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1 
p(0) - 2 and p ( -2x)  = 0 for x > 0  

As a result, equation (14.5) yields 

(m2)3/2-s = --(r~) 3/2-s 
n ~  - - o o  

(4.6a) 

Similarly, 

--2,1/2--S = __(~)l /2--S 
(TnnJ  

i1= --oo 

_2,-1~-,  = _ ( ~ ) - l ~ z - ,  
f f l n }  

i i =  - -0~  

(4.6b) 

(4.6c) 

From equations (4.3) and (4.6) 

r = q ( 3 ) a t .  (4,rr)-3r2 d ( s(s + 1/2) 'r2 (~_.~2y 

X f d3x a2{ ~I3 r~t~ (6 ) 
(s - 3/2)(s - 1/2) (s - 1/2) - ~ R3 

--  rnff I --  ~ [~3R3 + ~ "'3 "3v-vctl3 

1 .  ,( 
-180 R3 R3~,,,+~ ~ -  R~ 

s = 0  

oo,l, - - ~  d3x a ~---~-- - 2m0 g - ~ R3 

180 ~ ~ - R~ 
(4.7) 

Equation (4.7) gives the renormalized effective action up to the one-loop 
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correction in (1 + 2)-dimensional space. It is interesting to see that the one- 
loop correction to ~b, contributes to gravity the induced terms 

, 

167rG(3)in d 47rr ~ -  trio 

Aind ~3 

8'rrG(3)ind 6"rr 

and the higher derivative terms 

Xi,d = m0 g -- ~ I-'-]3R 3 4- ~ R~'V'a'f~'R3o,v,a,f~, 

. ,( i 1 ]  18oR~ Rw.,+~ ~ - g  R3 ~ 

(4.8a) 

(4.8b) 

(4.8c) 

5. EFFECTIVE FUNDAMENTAL CONSTANTS 

Including the contribution of the one-loop correction to (1 + 2)-dimen- 
sional gravity from equation (4.7) yields the effective gravitational action 

S(3) __f d3xa2[ 11 {db~2q_ 
g,eff = 8"n'G3 b2 \dt] 6---~ 

+ b + ~ - R3 + 
16"rrG3 ~ 8"rrn~_] 

(5.1) 

where fit0 is given by equation (3.12c) and • is defined by equation (4.8c). 
Thus from equation (5.1) one obtains 

16"trG(3)~fe 16"rrG--~ ~ ~ - (5.2a) 

where G(3)ar is the 3-dimensional effective gravitational constant, which 
is time dependent. The effective time-dependent cosmological constant is 
given as 

Aeff 11 [ db ~ 2 K,~ 
87rG(a)e--~ - 8~rG3b-----~ 2 / /~- ]  6'n (5.2b) 

Using b(t) from equation (2.23) in equation (5.2a), we obtain 
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1 if2 + ~(aotp + 0-21 ~a 

16'rrG(3)eef 16qrG3 

(5.3) 

where R 3 is given by equation (3.10b), and a(t) and b(t) are given by equations 
(2.22) and (2.23). Taking the limit t --> oo in equation (5.3), one finds that 

16"rrG(3)eff 16"rrG3 4~  

To determine f, one can go back to 4-dimensional gravity, where we know 
that at late times the gravitational constant is the Newtonian gravitational 
constant. One can then use G3 = GI2xrp (where G is the 4-dimensional 
Newtonian gravitational constant) given in equation (8.7). Thus, one obtains 

16"n'Geff 16'rrG ~ ~ - (5.5) 

As late times, GeeF is supposed to be equal to G, so one gets from equation (5.5) 

) f =  1 + -rrp - ~  (5.6) 

Equation (5.6) implies that 

(i) f ' =  I i fmo = 0 o r ~  = 1/6 ormo = 0 a n d ~  = 1.6. 
(ii) f = 0 if ~ = 1/6 + xrp/(2Gmo) and mo 4: O. 

The second implication is not physically valid, as it would mean that 
at late times the cosmological model with line element given by (2.24) will 
be (1 + 2)-dimensional. This is not correct, as the present universe is 
(1 + 3)-dimensional. 

The effective cosmological constant is give by equation (5.2b) as 

16"rrG r,,o 
= 4"rrb o + 8rr~oG(~ - I/6) [4Gb z \ d t ]  - ~ (5.7) 

At late times, one obtains from equation (5.7) that 
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lim Aef~ = 
8m3G 

3[4"trfp + 8moG(~ - 1/6)] 

8m03 

3[4"rrfpM2p + 8mo(~ - I/6)] 
(5.8) 

mo is the mass of the scalar field + in (1 + 3)-dimensional space (used in 
Section 3). For a physically relevant theory mo cannot be greater than the 
Planck mass Mp. Normally, mo is supposed to be quite less than Mp. So from 
equation (5.8) one finds limt__~ A,ef very small. 

6. (1 + 2)-DIMENSIONAL GRAVITATIONAL EQUATION AND 
COSMOLOGY 

The (1 + 2)-dimensional effective action for gravity is obtained from 
equations (3.7) and (4.7) as 

s~3) + ~,~3)"~.d + r + s~) 

if = ~ + S(m 3) __ ~ d3x v/~3 

• ~ 3 R 3 - - ~ a b ~ d t ]  + 

+ ~-~ - ~ V13R3 + 18---0 

4 

(6.1) 

where S~ ) is the action of the matter present other than the scalar fields dp. 
and v/g3 = a 2 in the effective (1 + 2)-dimensional cosmological model 

d $  2 = d t  2 - -  a 2 ( t ) ( d r  2 + r 2 dO 2) (6.2) 

with a(t) = ao + (t/tp) given by equation (2.22). 
The (1 + 2)-dimensional gravitational field equations are derived from 

equation (6.1) as 
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1 + 1 r l l  {db~ 2 4 r ~ ]  
\at) -3-]  g~'~' 

+ 2 ~  ~ - 2R3.~,~, - 2g~,r - ~ g~,r + 2R3R3~,r 

+ 1 ( 1 .'~'~'s' ' ' 
180r~o - ~ g~,r R3.,~,~,s, + 2R3~,w~,~,R~3~,"Y - 3 [-13R3~,r 

+ 2R3;~, r - 4R3~.'~,R3~'r + 4R~3'f;R3a,~.,frr - 2R3~,;r 

-t- ~ gv,v,[-"]3R 3 - 2R~3'Ix, R3a, v, q- ~ gv,v,g~3'f~'R3a,f~, : -8~(Tv,v, ) (6.3) 

If the matter fields in the model behave like a perfect fluid (which is very 
likely in the very early universe), we know that 

0 = (TO), p, = (TI), P2 = (T2) 

where p is the energy density, ( . . . )  denotes the vacuum expectation value, 
arid Pl and P2 are components of the pressure. Thus, in the model given by 
equation (6.2), 

1 + 1  [ ~ b  2 (db~ 2 4 ~ ]  

1 ( 1 

+ ~ R~3'13"~'S'R3.,fr.,s, + 2R3o~,13,-y,/~3o 13''r - 3 [-]3R~3o 

+ 2R&~ - 4 ~ , ~ ' o  - 4 ~ ' ~ ' ~ o , o ~ .  - 2R3;o~.~'~ 

, , ) q- ~ [-'-]3R3 - 2R~"OR3 ,0 + ~ R'~'a'R3'~'f~ ' 

1 [ 11 (db~ 2 4r~ 1 ( 1 ) 2 ( 1 )  
= 2 ~3b ka t]  - - 7 -  + 2trio ~ - - 2 R2 + 2R3R~3~ 

+ ~ - ~ ~'~'"~'R3o.~.~,s, + 2~.~.~ ,~;~ ' , '  

- 4R~3~, R~o' - 4R~a'13'R~ , - 2R3;o~,~'~ 
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1 ) 
+ 4 I"-I3R 3 - 2R~3'~ + ~ R~a'f~'R3oL,8, 

53 -I _2d2a 
=2 3 ~L4, ~- -~6J ~ de 

, [ . ,  . : a  (';'"1 + 4 - - ~  3a-t (6.4a) - ~  + 2a-2 at d: 2 :3  ~ at~ J 

Z (~)]( l) Pl = P2 = - 2r~o - ~ R:3)! - ~ R3 

1[~31 b (db~ 2 4 ] I ( ~ _  6)2(2R~11 + ~  - + 

, ) 
- 2 1"-]3R 3 - ~ R~ + 2R3R~3)I 

+ ~ - /~3'13'~'8'R3..,13,v,5, + 2R(3n~,fr.f, RJ~"~ ''~' 

- 4 V-]3R(I)I + 2Rill t . _ A~13ot 
�9 - -  4Rt3)aR(3)l .-m3 ,,t3all?, 

-- 2R'~3;~ , + 1--13R~3)1 + ~ [--]3R3 - 2R~tR3., + ~ R~3t3R3"I ~ 

[ ( 1 ) b . _ . ~ l a _ t d ' a  1111 (db~ 4 ] 
= 2n-'t~ - ~  -2G3J - ~  + 2  ~3bidtJ  - 3  rff3 

+ 4 ~j _ a-i d4a 2d2a'~ 
-~ a: a- - ~ ]  

1 [ d4a _2(d'af]  
+ ~ 7a-l d:  - 22a ~ (6.4b) 

where b is given by equation (2.2) and r~o is defined through (3.12c). 
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Taking the trace of equation (6.3), one obtains 

- ~ 3 - 2 m o g - ~  R 3 + ~  --~3b \ dt ] - -3 

+ ~ - - 4  ["-]3R3 + R 2 + R~'~'x'~'R3,,~,,fs, 

1 [-]3R3 _ 1 ) - ~ ~ R~'r = -8~r(7) (6.5) 

In the case (7) = 0, equation (6.5) yields 

1 ( ~ _ 1  2 . . . .  

1 [--13R3 _ 1 ) - = 0 ( 6 . 6 )  

Using the defmitions of b(t) and do given by equations (2.23) and (3.12c), 
respectively, and taking the limit t -+ ~, one obtains 

mo = 0 (6.7) 

Thus if the energy-momentum tensor is traceless, the effective cosmological 
constant given by equation (5.8) vanishes at late times. 
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